Usage Notebooks¶
Contents:
- Preprocessing Demo
 - Abbreviation Handler Demo
 - Pipelines
 - Similarity Demo
 - NLP Alias Demo
 - ER Schema
 - MBSE
 - Rule-based NLP
- 1. Set up the path, so that the NLP modules can be found
 - 2. Load Spacy module
 - 3. Load other modules
 - 4. Import NLP modules
 - 5. Set up logging
 - 6. Read and process entities
 - 7. Read and process causal keywords
 - 8. Create Rule-based matcher with entity list and causal entity list
 - 9. Read input text file, or users can provide a raw string
 - 10. Process raw string data using matcher
 - 11. Access processed information from matcher
 
 - Workflow Demo
- Set Paths and Loading Required Modules
 - Initialize variables
 - Load entity list and causal list or provide directly
 - Generate patterns that can be used in NER
 - Create rule-based matcher with entity list and causal entity list
 - Read raw text data and preprocess it
 - Correct the doc
 - Process text using Rule Based Matcher
 
 - Work Order Processing
 - Anomaly Detection
- Anomaly types and matrix profile can convert different types fo anomalies into outliers
 - Set up paths and load matrix profile module
 - Calculate the matrix profiles for NY taxi data
 - Calculate matrix profile for steam generator data
 - Testing ‘approx’ method to compute matrix profile
 - Enable Streaming, use ‘evaluate’ function for streaming data
 - Test different data structure
 - Test Multi-Dimensional Anomaly Detection: Identify Best K out of N Anomalies
 
 - Knowledge Graph Demo