Usage Notebooks¶
Contents:
- Preprocessing Demo
- Abbreviation Handler Demo
- Pipelines
- Similarity Demo
- NLP Alias Demo
- ER Schema
- MBSE
- Rule-based NLP
- 1. Set up the path, so that the NLP modules can be found
- 2. Load Spacy module
- 3. Load other modules
- 4. Import NLP modules
- 5. Set up logging
- 6. Read and process entities
- 7. Read and process causal keywords
- 8. Create Rule-based matcher with entity list and causal entity list
- 9. Read input text file, or users can provide a raw string
- 10. Process raw string data using matcher
- 11. Access processed information from matcher
- Workflow Demo
- Set Paths and Loading Required Modules
- Initialize variables
- Load entity list and causal list or provide directly
- Generate patterns that can be used in NER
- Create rule-based matcher with entity list and causal entity list
- Read raw text data and preprocess it
- Correct the doc
- Process text using Rule Based Matcher
- Work Order Processing
- Anomaly Detection
- Anomaly types and matrix profile can convert different types fo anomalies into outliers
- Set up paths and load matrix profile module
- Calculate the matrix profiles for NY taxi data
- Calculate matrix profile for steam generator data
- Testing ‘approx’ method to compute matrix profile
- Enable Streaming, use ‘evaluate’ function for streaming data
- Test different data structure
- Test Multi-Dimensional Anomaly Detection: Identify Best K out of N Anomalies
- Knowledge Graph Demo