Monte Carlo SamplingΒΆ
Utilize Monte Carlo Sampling to perform random model explorations for experiment design. In this
analysis, set <AnalysisType>MC</AnalysisType>
. For example, The following input will utilize Monte
Carlo Sampling to generate 10
random samples of input variables x, y
with associated
Uniform
distributions, respectively.
<?xml version="1.0" ?>
<Simulation>
<RunInfo>
<WorkingDir>MC</WorkingDir>
<batchSize>1</batchSize>
</RunInfo>
<GlobalSettings>
<AnalysisType>MC</AnalysisType>
<limit>10</limit>
<Inputs>x, y</Inputs>
<Outputs>OutputPlaceHolder</Outputs>
</GlobalSettings>
<Distributions>
<Uniform name='x'>
<lowerBound>-10</lowerBound>
<upperBound>0</upperBound>
</Uniform>
<Uniform name='y'>
<lowerBound>-6.5</lowerBound>
<upperBound>0</upperBound>
</Uniform>
</Distributions>
</Simulation>
When a dynamic model is provided, the users need to set <pivot>
and <dynamic>
node in the
<GlobalSettings>
. As illustrated in the following example.
<?xml version="1.0" ?>
<Simulation>
<RunInfo>
<WorkingDir>MC</WorkingDir>
<batchSize>1</batchSize>
</RunInfo>
<GlobalSettings>
<AnalysisType>MC</AnalysisType>
<limit>10</limit>
<Inputs>x0, y0, z0</Inputs>
<pivot>time</pivot>
<dynamic>True</dynamic>
<Outputs>x,y,z</Outputs>
</GlobalSettings>
<Distributions>
<Normal name="x0">
<mean>4</mean>
<sigma>1</sigma>
</Normal>
<Normal name="y0">
<mean>4</mean>
<sigma>1</sigma>
</Normal>
<Normal name="z0">
<mean>4</mean>
<sigma>1</sigma>
</Normal>
</Distributions>
<Models>
<ExternalModel ModuleToLoad="../models/lorentzAttractor.py" name="lorentzAttractor" subType="">
<inputs>inputGroup</inputs>
<outputs>outputGroup</outputs>
</ExternalModel>
</Models>
</Simulation>
In addition, the users can use inputGroup
and outputGroup
to represent input and output variable list.
As illustrated in above example <ExternalModel>
node.