Model CalibrationΒΆ
Model calibrations via Bayesian inference to integrate experiments to improve model performance:
In this analysis, set <AnalysisType>model_calibration</AnalysisType>
.
When a dynamic model is provided, the users need to set <pivot>
and <dynamic>
node in the
<GlobalSettings>
. As illustrated in the following example.
In addition, the initial values for input variables can be provided via <InitialInputs>
.
<?xml version="1.0" ?>
<Simulation verbosity="debug">
<RunInfo>
<WorkingDir>calibration_dynamic</WorkingDir>
<batchSize>1</batchSize>
</RunInfo>
<GlobalSettings>
<AnalysisType>model_calibration</AnalysisType>
<pivot>time</pivot>
<dynamic>True</dynamic>
<limit>100</limit>
<Inputs>alpha, beta, gamma</Inputs>
<InitialInputs>0.1, 4.0, -1.0</InitialInputs>
<Outputs>eta</Outputs>
</GlobalSettings>
<LikelihoodModel>
<simTargets>eta</simTargets>
<expTargets shape="1,50" computeCov='False' correlation='False'>
-1.16074224 -1.10303445 -1.02830511 -0.89782965 -0.73765453 -0.7989537
-0.86163706 -1.02209944 -1.12444044 -1.23657398 -1.16081758 -1.01219869
-0.890747 -0.80444122 -0.70893668 -0.61012531 -0.65670863 -0.6768583
-0.74732441 -0.81448647 -0.73232671 -0.54989334 -0.39796749 -0.07894291
0.13067378 0.28999998 0.27418965 0.313329 0.32306704 0.2885684
0.32736775 0.52458854 0.69446572 0.82419521 1.04393683 1.00435818
1.0810376 0.97245373 0.82406522 0.76067559 0.70145544 0.79479965
0.88035895 0.97750307 1.11524353 1.17159017 1.18299222 1.07255006
1.02835909 0.90784132
</expTargets>
<expCov diag="True">
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02, 0.02, 0.02, 0.02, 0.02
</expCov>
<!-- <biasTargets></biasTargets>
<biasCov diag="False"></biasCov> -->
<!-- <romCov diag="True"></romCov> -->
</LikelihoodModel>
<Distributions>
<Uniform name='alpha'>
<lowerBound>0.1</lowerBound>
<upperBound>0.3</upperBound>
</Uniform>
<Uniform name='beta'>
<lowerBound>4</lowerBound>
<upperBound>6</upperBound>
</Uniform>
<Uniform name='gamma'>
<lowerBound>-1</lowerBound>
<upperBound>1</upperBound>
</Uniform>
</Distributions>
<Models>
<ExternalModel ModuleToLoad="../models/model_cal" name="model" subType="">
<inputs>inputGroup</inputs>
<outputs>outputGroup</outputs>
</ExternalModel>
</Models>
</Simulation>