src.dackar.anomalies.MatrixProfile

Attributes

logger

DASK_CLIENT_AVAIL

DASK_CLIENT_AVAIL

Classes

MatrixProfile

_summary_

Module Contents

src.dackar.anomalies.MatrixProfile.logger[source]
src.dackar.anomalies.MatrixProfile.DASK_CLIENT_AVAIL = False[source]
src.dackar.anomalies.MatrixProfile.DASK_CLIENT_AVAIL = True[source]
class src.dackar.anomalies.MatrixProfile.MatrixProfile(m, normalize='robust', method='normal', kdp=False, approx_percentage=0.1, sub_sequence_normalize=False, excl_zone_denom=4)[source]

Bases: src.dackar.anomalies.AnomalyBase.AnomalyBase

_summary_

Parameters:

AnomalyBase (_type_) – _description_

_m[source]
_norm = 'robust'[source]
_sub_norm = False[source]
_mp[source]
_avail_method = ['normal', 'parallel', 'approx', 'incremental', 'gpu'][source]
_method = ''[source]
_scrump_percentage = 0.1[source]
_current_idx = [][source]
_norm_plot = True[source]
_compute_kdp = False[source]
_kdp[source]
_fit(X, y=None)[source]

perform fitting

Parameters:
  • X (pandas.DataFrame) – (n_time_steps, n_features)

  • y (pandas.DataFrame, optional) – ignored, (n_time_steps, n_features). Defaults to None.

_compute_mp(X_, y_=None)[source]

compute matrix profile

Parameters:
  • X (pandas.DataFrame) – (n_time_steps, n_features)

  • y (pandas.DataFrame, optional) – ignored, (n_time_steps, n_features). Defaults to None.

_evaluate(X)[source]

perform evaluation

Parameters:

X (pandas.DataFrame) – (n_time_steps, n_features)

plot()[source]

plot data

plot_kdp()[source]

plot data

get_mp()[source]

get matrix profile value

get_mp_index()[source]

get matrix profile index

get_mp_left_index()[source]

get left matrix profile index

get_mp_right_index()[source]

get right matrix profile index