src.dackar.anomalies.AnomalyBase

Created on Dec. 19, 2024

@author: wangc, mandd Base Class for Anomaly Detection

Attributes

logger

Classes

AnomalyBase

Anomaly detection base class

Module Contents

src.dackar.anomalies.AnomalyBase.logger[source]
class src.dackar.anomalies.AnomalyBase.AnomalyBase(norm='robust')[source]

Bases: sklearn.base.BaseEstimator

Anomaly detection base class

print_tag = 'AnomalyBase'[source]
is_fitted = False[source]
_features = None[source]
_targets = None[source]
_norm = 'robust'[source]
_meta[source]
_xindex = None[source]
_yindex = None[source]
_xcolumns = None[source]
_ycolumns = None[source]
reset()[source]

reset

get_params()[source]

Get parameters for this estimator.

Returns:

params – Parameter names mapped to their values.

Return type:

dict

set_params(**params)[source]

Set the parameters of this estimator.

Parameters:

**params (dict) – Estimator parameters.

Returns:

self – Estimator instance.

Return type:

estimator instance

fit(X, y=None)[source]

perform fitting

Parameters:
  • X (array-like) – (n_samples, n_features)

  • y (array-like, optional) – (n_samples, n_features). Defaults to None.

evaluate(X)[source]

perform evaluation

Parameters:

X (array-like) – (n_samples, n_features)

plot()[source]

plot data

abstract get_anomalies()[source]

get the anomalies

abstract _fit(X, y=None)[source]

perform fitting

Parameters:
  • X (array-like) – (n_samples, n_features)

  • y (array-like, optional) – (n_samples, n_features). Defaults to None.

abstract _evaluate(X)[source]

perform evaluation

Parameters:

X (array-like) – (n_samples, n_features)

static check_data(data)[source]

Check the format of data

Parameters:

data (_type_) – list, numpy.ndarray or pandas.DataFrame