Source code for src.dackar.utils.mbse.LMLparser

# Copyright 2024, Battelle Energy Alliance, LLC  ALL RIGHTS RESERVED

"""
Created on February, 2024

@author: mandd
"""

# External Imports
import xml.etree.ElementTree as ET
import re
import networkx as nx
import pandas as pd
import csv

[docs] class LMLobject(object): """ Class designed to process the MBSE model developed in Lifecycle Modeling Language (LML) using Innoslate. """ def __init__(self, filename): """ Initialization method for the LMLobject class Args: filename: file, file in xml containing the MBSE model deveolped in LML using Innoslate Returns: None """
[docs] self.filename = filename
[docs] self.entities = {}
[docs] self.linkEntities = []
[docs] self.embEntities = {}
[docs] self.LMLgraph = None
[docs] self.acronyms = {}
[docs] self.listIDs = []
[docs] self.linkToMBSEmodels = {}
[docs] def LMLparser(self, diagramName): """ This method is designed to parse the xml file containing the MBSE model, to create its corresponding graph and to populate: * the set of entities: dictionary of assets in the form of 'LML_ID': ('asset name', 'asset ID') * the set of links: list containing the LML-IDs of all links between assets * the set of embedded entities: dictionary of the components that have been specified in the description text of the LML asset or link (e.g., [comp1,comp2,comp3]) in the form of 'LML_ID': [comp1,comp2,comp3] Args: diagramName: string, original name of the diagram; it is used to remove the correposing node in the graph """ self.diagramName = diagramName self.LMLgraph = nx.MultiDiGraph() tree = ET.parse(self.filename) root = tree.getroot() self.DBnode = root.find('database') # Identify entities and links for child in self.DBnode: if child.tag=='entity': nametxt = child.find('name').text if ' to ' in nametxt: self.parseLinkEntity(child) else: self.parseAssetEntity(child) self.connetGraph()
[docs] def connetGraph(self): """ This method is designed to actually link the asset entities identified in the OPLparser method """ for child in self.DBnode: if child.tag=='relationship': sourceID = child.find('sourceId').text targetID = child.find('targetId').text attrNode = child.find('booleanAttribute') if attrNode is not None: attribute = attrNode.find('booleanValue').text if sourceID in self.linkEntities and targetID in self.entities.keys(): if attribute=='true': self.LMLgraph.add_edge(self.entities[targetID], sourceID, color='k', key='link') elif attribute=='false': self.LMLgraph.add_edge(sourceID, self.entities[targetID], color='k', key='link') else: raise IOError('LMLobject object: booleanValue for edge connecting "{}" and "{}" is not defined'.format(sourceID,self.entities[targetID]))
[docs] def parseLinkEntity(self, linkNode): """ This method extracts all required information of the link from the provided xml node. It populates the self.linkEntities and the self.embEntities variables. Args: linkNode: xml node, xml node containing containing all the information of a single link generated in LML using Innoslate Returns: None """ linkID = linkNode.find('globalId').text self.linkEntities.append(linkID) self.LMLgraph.add_node(linkID, color='b', key='entity') # Parse description if linkNode.find('description').text: entityDescr = linkNode.find('description').text elemList = parseEntityDescription(entityDescr)[0] # No link to MBSE models allowed for links self.embEntities[linkID] = elemList self.listIDs = self.listIDs + elemList for elem in elemList: self.LMLgraph.add_node(elem, color='m', key='entity_emb') for elem in elemList: self.LMLgraph.add_edge(linkID, elem, color='k', key='assoc')
[docs] def parseAssetEntity(self, entityNode): """ This method extracts all required information of the asset from the provided xml node. It populates the self.entities and the self.embEntities variables. Args: linkNode: xml node, xml node containing containing all the information of a single link generated in LML using Innoslate Returns: None """ assetID = entityNode.find('number').text entityID = entityNode.find('globalId').text entityName = entityNode.find('name').text.strip() cleanedName = re.sub(' +', ' ', entityName) elemList = None MBSElink = None if entityName == self.diagramName: return # Parse description entityDescr = entityNode.find('description').text if entityDescr: (elemList,MBSElink) = parseEntityDescription(entityDescr) if elemList: self.embEntities[entityID] = elemList self.listIDs = self.listIDs + elemList for elem in elemList: self.LMLgraph.add_node(elem, color='r', key='entity_emb') if MBSElink: self.LMLgraph.add_node(MBSElink, color='g', key='MBSE_linked_ent') if assetID: self.entities[entityID] = (entityName,assetID) self.listIDs.append(assetID) self.LMLgraph.add_node((entityName,assetID), color='m', key='entity') if elemList: for elem in elemList: self.LMLgraph.add_edge((entityName,assetID), elem, color='k', key='assoc') if MBSElink: self.LMLgraph.add_edge((entityName,assetID), MBSElink, color='g', key='MBSElink') else: self.entities[entityID] = (entityName,None) self.LMLgraph.add_node((entityName,None), color='m', key='entity') if elemList: for elem in elemList: self.LMLgraph.add_edge((entityName,None), elem, color='k', key='assoc') if MBSElink: self.LMLgraph.add_edge((entityName,None), MBSElink, color='g', key='MBSElink')
[docs] def returnGraph(self): """ This method returns the networkx graph Args: None Returns: self.LMLgraph: networkx object, graph containing entities specified in the LML model """ return self.LMLgraph
[docs] def returnEntities(self): """ This method returns the the dictionaries of entities and embedded entities specified in the MBSE model Args: None Returns: self.entities : dict, dict of entities self.embEntities : dict, dict of embedded entities """ return self.entities, self.embEntities
[docs] def returnListIDs(self): """ This method returns the list of asset IDs Args: None Returns: self.listIDs: list, list of asset IDs specified in the LML MBSE model """ rmv = [str(item) for item in range(1, 40)] cleaned = set(self.listIDs).difference(set(rmv)) return list(cleaned)
[docs] def cleanedGraph(self): """ This method is designed to clean the complete MBSE graph by removing the links which are represented as nodes Args: None Returns: g: networkx object, cleaned graph containing only asset entities specified in the LML MBSE model """ self.cleanedGraph = self.LMLgraph.copy() for node,degree in self.cleanedGraph.degree(): if node in self.linkEntities: a0,b0 = list(self.cleanedGraph.in_edges(node))[0] a1,b1 = list(self.cleanedGraph.out_edges(node))[0] e0 = a0 if a0!=node else b0 e1 = a1 if a1!=node else b1 self.cleanedGraph.add_edge(e0, e1) self.cleanedGraph.remove_nodes_from(self.linkEntities) return self.cleanedGraph
[docs] def printOnFile(self, name, csv=True): """ This method is designed to print on file the graph from networkx. This is to test a method to import a graph into neo4j as indicated in: https://stackoverflow.com/questions/52210619/how-to-import-a-networkx-graph-to-neo4j Args: None Returns: None """ if csv: name = name + ".csv" nx.write_edgelist(self.LMLgraph, name, delimiter=',', data=True, encoding='utf-8') else: name = name + ".graphml" nx.write_graphml(self.LMLgraph, name)
[docs] def dumpNodesEdgesFiles(self, name): """ This method is designed to save the graph structure into gds entity See Example 3.2 in https://neo4j.com/docs/graph-data-science-client/current/graph-object/ Args: None Returns: None """ NXnodes = list(self.LMLgraph.nodes(data=True)) NXedges = list(self.LMLgraph.edges) mapping = {} nodes = { "nodeId": [], "label": [], "ID": [], "type": [] } for index,node in enumerate(NXnodes): nodes['nodeId'].append(index) mapping[index] = node[0] nodeInfo = node[0] if len(nodeInfo)==2: if nodeInfo[0] == 'None': nodes['label'].append(nodeInfo[1]) nodes['ID'].append(nodeInfo[1]) elif nodeInfo[1] is None: nodes['label'].append(nodeInfo[0]) nodes['ID'].append('None') else: nodes['label'].append(nodeInfo[0]) nodes['ID'].append(nodeInfo[1]) nodes['type'].append(node[1]['key']) else: nodes['label'].append('pipe') nodes['ID'].append(nodeInfo) nodes['type'].append('LML_link') nodes = pd.DataFrame(nodes) relationships = { "sourceNodeId": [], "targetNodeId": [], "type" : [] } for index,edge in enumerate(NXedges): father = [key for key, val in mapping.items() if val == edge[0]][0] child = [key for key, val in mapping.items() if val == edge[1]][0] relationships['sourceNodeId'].append(father) relationships['targetNodeId'].append(child) relationships['type'].append(edge[2]) relationships = pd.DataFrame(relationships) nodes.to_csv(name+'_nodes.csv',index=False, quoting=csv.QUOTE_NONE) relationships.to_csv(name+'_edges.csv',index=False)
[docs] def parseEntityDescription(text): """ This method is designed to extract the elements specified in square brackets that are specified in the description node of the MBSE model of a link or entity Args: text: str, text contained in the description node of the MBSE model Returns: out: tuple, tuple containing the list of elements specified in square brackets and separated by commas (e.g., ['FV304,'305']) and the link to an external MBSE model (e.g., ('centrifugalPumpFull', 'body')) """ if '[' in text: listOfElems = [] txtPortion1 = text[text.find("[")+1:text.find("]")] listOfElemstemp = txtPortion1.split(';') for elem in listOfElemstemp: temp=elem[elem.find("(")+1:elem.find(")")].split(',') listOfElems.append((temp[0],temp[1])) else: listOfElems = None if '{' in text: MBSElink = text[text.find("{")+1:text.find("}")].split(':') MBSEinstance = (MBSElink[0],MBSElink[1]) else: MBSEinstance = None out = (listOfElems,MBSEinstance) return out