Source code for src.dackar.pipelines.TemporalRelationEntity

# Copyright 2024, Battelle Energy Alliance, LLC  ALL RIGHTS RESERVED

from spacy.language import Language
import pandas as pd

from ..utils.nlp.nlp_utils import generatePatternList
# from .config import nlpConfig

import logging
[docs] logger = logging.getLogger(__name__)
@Language.factory("temporal_relation_entity", default_config={"patterns": None})
[docs] def create_temporal_relation_component(nlp, name, patterns): return TemporalRelationEntity(nlp, patterns=patterns)
[docs] class TemporalRelationEntity(object): """ How to use it: .. code-block:: python from TemporalRelationEntity import TemporalRelationEntity nlp = spacy.load("en_core_web_sm") patterns = {'label': 'temporal_relation', 'pattern': [{'LOWER': 'follow'}], 'id': 'temporal_relation'} cmatcher = ConjectureEntity(nlp, patterns) doc = nlp("The system failed following the pump failure.") updatedDoc = cmatcher(doc) or: .. code-block:: python nlp.add_pipe('temporal_relation_entity', config={"patterns": {'label': 'temporal_relation', 'pattern': [{'LOWER': 'follow'}], 'id': 'temporal_relation'}}) newDoc = nlp(doc.text) """ def __init__(self, nlp, patterns=None, callback=None): """ Args: nlp: spacy nlp model patterns: list/dict """
[docs] self.name = 'temporal_relation_entity'
if patterns is None: # update to use config file instead # filename = nlpConfig['files']['time_relation_file'] filename = '~/projects/raven/plugins/SR2ML/src/nlp/data/time_relation_keywords.csv' entLists = pd.read_csv(filename, header=0) orderList = entLists['order'].dropna().values.ravel().tolist() reverseOrderList = entLists['reverse-order'].dropna().values.ravel().tolist() concurrencyList = entLists['concurrency-coincidence'].dropna().values.ravel().tolist() patterns = [] orderPatterns = generatePatternList(orderList, label='temporal_relation_order', id='temporal_relation', nlp=nlp, attr="LEMMA") patterns.extend(orderPatterns) reverseOrderPatterns = generatePatternList(reverseOrderList, label='temporal_relation_reverse_order', id='temporal_relation', nlp=nlp, attr="LEMMA") patterns.extend(reverseOrderPatterns) concurrencyPatterns = generatePatternList(concurrencyList, label='temporal_relation_concurrency', id='temporal_relation', nlp=nlp, attr="LEMMA") patterns.extend(concurrencyPatterns) if not isinstance(patterns, list) and isinstance(patterns, dict): patterns = [patterns] # do we need to pop out other pipes? if not nlp.has_pipe('entity_ruler'): nlp.add_pipe('entity_ruler')
[docs] self.entityRuler = nlp.get_pipe('entity_ruler')
self.entityRuler.add_patterns(patterns)
[docs] def __call__(self, doc): """ Args: doc: spacy.tokens.doc.Doc, the processed document using nlp pipelines """ doc = self.entityRuler(doc) return doc