src.dackar.similarity.SentenceSimilarity ======================================== .. py:module:: src.dackar.similarity.SentenceSimilarity Attributes ---------- .. autoapisummary:: src.dackar.similarity.SentenceSimilarity.log_format src.dackar.similarity.SentenceSimilarity.logger Classes ------- .. autoapisummary:: src.dackar.similarity.SentenceSimilarity.SentenceSimilarity Module Contents --------------- .. py:data:: log_format :value: '%(asctime)s %(message)s' .. py:data:: logger .. py:class:: SentenceSimilarity(disambiguationMethod='simple_lesk', similarityMethod='semantic_similarity_synsets', wordOrderContribution=0.0) .. py:attribute:: validDisambiguation :value: ['simple_lesk', 'original_lesk', 'cosine_lesk', 'adapted_lesk', 'max_similarity'] .. py:attribute:: wordnetSimMethod :value: ['path_similarity', 'wup_similarity', 'lch_similarity', 'res_similarity', 'jcn_similarity',... .. py:attribute:: validSimilarity :value: ['path_similarity', 'wup_similarity', 'lch_similarity', 'res_similarity', 'jcn_similarity',... .. py:attribute:: wordOrder :value: 0.0 .. py:attribute:: disambiguationMethod :value: '' .. py:attribute:: similarityMethod :value: '' .. py:attribute:: brownIc .. py:method:: setParameters(paramDict) Method to set the parameters .. py:method:: constructSimilarityVectorPawarMagoMethod(arr1, arr2) Construct the similarity vector :param arr1: set of wordnet.Synset for one sentence :param arr2: set of wordnet.Synset for the other sentence :returns: list, list of similarity vector count: int, the number of words that have high similarity >=0.804 :rtype: vector .. py:method:: sentenceSimilarity(sentence1, sentence2, method='pm_disambiguation', infoContentNorm=False) sentence similarity calculation .. py:method:: sentenceSimilarityPawarMagoMethod(sentence1, sentence2) Proposed method from https://arxiv.org/pdf/1802.05667.pdf :param sentence1: str, first sentence used to compute sentence similarity :param sentence2: str, second sentence used to compute sentence similarity :returns: float, [0, 1], the computed similarity for given two sentences :rtype: similarity .. py:method:: sentenceSimialrityBestSense(sentence1, sentence2, infoContentNorm=False) Proposed method from https://github.com/anishvarsha/Sentence-Similaritity-using-corpus-statistics Compute sentence similarity using both semantic and word order similarity The semantic similarity is based on maximum word similarity between one word and another sentence :param sentence1: str, first sentence used to compute sentence similarity :param sentence2: str, second sentence used to compute sentence similarity :param infoContentNorm: bool, True if statistics corpus is used to weight similarity vectors :returns: float, [0, 1], the computed similarity for given two sentences :rtype: similarity