src.dackar.pipelines.TemporalRelationEntity =========================================== .. py:module:: src.dackar.pipelines.TemporalRelationEntity Attributes ---------- .. autoapisummary:: src.dackar.pipelines.TemporalRelationEntity.logger Classes ------- .. autoapisummary:: src.dackar.pipelines.TemporalRelationEntity.TemporalRelationEntity Functions --------- .. autoapisummary:: src.dackar.pipelines.TemporalRelationEntity.create_temporal_relation_component Module Contents --------------- .. py:data:: logger .. py:function:: create_temporal_relation_component(nlp, name, patterns) .. py:class:: TemporalRelationEntity(nlp, patterns=None, callback=None) Bases: :py:obj:`object` How to use it: .. code-block:: python from TemporalRelationEntity import TemporalRelationEntity nlp = spacy.load("en_core_web_sm") patterns = {'label': 'temporal_relation', 'pattern': [{'LOWER': 'follow'}], 'id': 'temporal_relation'} cmatcher = ConjectureEntity(nlp, patterns) doc = nlp("The system failed following the pump failure.") updatedDoc = cmatcher(doc) or: .. code-block:: python nlp.add_pipe('temporal_relation_entity', config={"patterns": {'label': 'temporal_relation', 'pattern': [{'LOWER': 'follow'}], 'id': 'temporal_relation'}}) newDoc = nlp(doc.text) .. py:attribute:: name :value: 'temporal_relation_entity' .. py:attribute:: entityRuler .. py:method:: __call__(doc) :param doc: spacy.tokens.doc.Doc, the processed document using nlp pipelines